Pioneering Microburst Avoidance with the Terminal Doppler Weather Radar (TDWR)

O A

Lexington Computer and Technology Group (LCTG)

Jim Evans

12 January 2022

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited

Aviation Weather Hazards

Lincoln products improve situational awareness of hazardous aviation weather conditions to enhance system safety & efficiency

Major Accidents Attributed to Microburst Wind Shear

Challenges for Pilots

- Recognition is difficult
- Time available for recognition is short (5 to 15 seconds)
- Effective crew coordination is essential
- Pilot training at the time did not emphasize most effective responses
 - Flight path must be controlled with pitch attitude
 - Reduced airspeed may have to be accepted to ensure flight path control
- Operationally significant encounters were infrequent for individual pilots
- Rapid time evolution of phenomena: reports from preceding pilots may understate the hazard

Time Evolution of Microburst-Producing Storms

- Storms can rapidly change with time
- Microburst outflow occurs when rain shaft reaches ground
- In dry environments such as Denver, rain may not reach the ground

"Wet Microburst" Easy to detect

"Dry Microburst" (Southwest) Nearly invisible, just as dangerous

Lincoln Laboratory Air Traffic Control Workshop 2021 Pioneering the TDWR-JEE 27 April 2021

[Hallowell, R, et, al., Wind-shear System Cost Benefit Analysis Update, Project Report ATC-341, MIT Lincoln Laboratory, Lexington, MA, 2009]

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Key Elements of Reducing Fatal Accidents Due to Microbursts

	Key Element		How Accomplished							
•	Reliable automated detection of microbursts and warning generation	•	MIT Lincoln Laboratory R & D using Lincoln prototype TDWR							
•	Procedures for ATC and pilot use of microburst warnings	• • •	NCAR CLAWS real time radar meteorologist detections 1984 FAA TDWR/LLWAS User Group 1986-1989 FAA Procedures 1988 Airline policies for pilots 1988							
•	Training of pilots to manage microburst encounters	•	Windshear Training Aid (Boeing for FAA, 1987) Airline flight simulators							
•	Success in acquisition, deployment and operational use of the TDWR	•	Collaboration between FAA, Lincoln, Raytheon and various R&D laboratories							

Terminal Doppler Weather Radar (TDWR) developed to provide critical microburst detection capability

Lincoln Laboratory Air Traffic Control Workshop 2021 Pioneering the TDWR-JEE 27 April 2021 CLAWS-Classify and Locate Wind Shear LLWAS-Low Level Wind Shear Alert System NCAR – National Center for Atmospheric Research

TDWR Operational Concept and Requirements

Plan view display for ATC to minimize the usage of runways and approach/ departure paths that are impacted by microbursts

Airline guidance to pilots: Do not land or take off on a runway with a microburst alert in effect

Technical Performance Requirements

- Probability of detection > 95% for microbursts with a false alarm probability < 5%
- Accuracy of wind shear estimate should be within ± 5 knots or 20% (whichever is greater) for at least 70% of detections

- Classic radar equation for point targets: received signal power
- When sensing weather, $\sigma \approx$ scanned volume x \sum rain drop cross sections so that

 $\sigma \approx (.5 \text{ cT}) (\text{R} \Theta_v) (\text{R} \Theta_h) \eta$ so that $P_r \approx \eta P_t T \Theta_v \Theta_h / \mathbb{R}^2$ with η = volume scattering cross section

 $P_r = P_t rac{G^2 \lambda^2 \sigma}{\left(4\pi
ight)^3 R^4} \propto rac{\sigma}{R^4}$

ASR-9

- Consequences of the nature of the "target" and the resulting range equation
 - Returns are a Gaussian random process whose parameters must be estimated by statistical techniques
 - "Out of trip" returns from weather at long ranges are a significant concern if one is seeking to measure Doppler
 - Ground clutter near radar a challenge if seeking to measure winds near the surface
- Wind shear detection radars are generally straightforward (pencil or fan beam mechanical scanning, S- or Cband, 1 usec pulses)

Technical Challenges to Wind Shear Detection with Doppler Weather Radar

Lincoln Laboratory Air Traffic Control Workshop 2021 Pioneering the TDWR-JEE 27 April 2021

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TDWR System Key Features

TDWR Surface Reflectivity and Doppler Velocity Images

Red boxes are microburst locations determined by analyst

Microbursts on approach to runways 26L and 26R

- White lines are runways at Stapleton International Airport
- Event occurred in June 1988

Lincoln Laboratory Air Traffic Control Workshop 2021 Pioneering the TDWR-JEE 27 April 2021

Lincoln TDWR Testbed at Orlando 1990-1991

By combining surface Doppler data from the research radars and the prototype, one can determine the 3D wind field

Lincoln Laboratory Air Traffic Control Workshop 2021 Pioneering the TDWR-JEE 27 April 2021

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lincoln TDWR Testbed Time History

Year Field Experiments TDWR Test Bed	85 MEM	86 HSV	87 DEN	88 DEN	89 МКС	90 MCO	91 MCO	92 MCO	93 MCC	94	95	96	97	98	99	00
Integrated Terminal Weather System and Storm Growth/Decay									мсс	MCO MEM	MCO MEM DFW	MCO MEM DFW	MCO MEM DFW	MCO MEM DFW NYC	MCO MEM DFW NYC	MCO MEM DFW NYC
 Operational Operati Four aircraft Denver's Sta warnings of changes as h airspeed mar 		 Testbed transmitter transition from S-band to C-band 				Replace by first p Start of l enhance TDWR c										
 Several of the pilots stated the warnings were a key factor in avoiding an accident ("The day all hell broke loose" FAA video) 																

- Addressing baseline problems
 - Reduction of false alarms due to birds, insects, strong surface winds with terrain
 - Over-warning due to overly conservative criteria for how close a microburst region had to be to the flight path to warrant issuing an alert
 - Technical performance of gust front detection and tracking
- Major improvements in decision support beyond the IOC capability
 - Predictions of intensifying microbursts
 - Providing storm motion/extrapolated positions to manage runway usage
 - Providing microburst information to pilots via data link
 - Integration of TDWR alerts with surface anemometer array alerts

The TDWR Success Arose from Contributions from Many Organizations (especially the FAA, Scientists, Raytheon, and Lincoln)

Ted Fujita Univ. Chicago

John McCarthy NCAR

Alan Fraser Raytheon

Orlando (MCO) Tower/TRACON staff

Dan Strawbridge FAA

Lincoln System Development/Prototype Team

FAA Program Support Facility (PSF)

Operational TDWR Locations

Lincoln Laboratory Air Traffic Control Workshop 2021 Pioneering the TDWR-JEE 27 April 2021

- Refurbishment analysis and testing are underway so that TDWR can continue operation at major airports for a number of years
- Additional potential uses of TDWR include:
 - Use of the existing TDWR derived low altitude winds and wind shear products at 34 major metropolitan areas for:

Helicopter Emergency Medical Services (HEMS)

UAS and Urban Air Mobility (UAM)

 A "target" channel addition to the TDWR could provide low altitude surveillance of possibly hostile low altitude targets (e.g., UAS) and/or to support UAM operations

TDWR Role in Real-Time Low-Altitude Wind Information for Major Metropolitan Areas

TDWR / ITWS provides low altitude winds and wind shear detections that could be used to support HEMS, UAS, and Urban Air Mobility (UAM) operations at 34 major metropolitan areas

Analysis: 2020-06-25T21:50:00 | Valid: 2020-06-25T21:50:00

Washington DC gridded surface wind analysis (4 km updated every 5 minutes)

- TDWR scans near surface once per minute
- TDWR sensitivity to low cross section targets is much higher than ASR-9 sensitivity
- Would need to have dual polarization to see discrete targets in precipitation (as is done with the Lincoln-developed ASR-9 Weather Systems Processor (WSP)

- The TDWR has been very successful in preventing low altitude wind shear accidents and facilitating proactive air traffic management for over 25 years
- Key elements of this success were:
 - 1. Ongoing prototype testing while procurement was underway
 - 2. Good working relationship between production contractor (Raytheon) and Lincoln
 - 3. Signal and image processing technology improvements to address long standing problems such as range/velocity folding and image recognition
- Refurbishment analysis and testing is underway so that TDWR can continue operation at major airports for a number of years
- Additional uses of TDWR that should be considered include:
 - 1. Use of the existing TDWR/ITWS low altitude winds and wind shear products to support HEMS, UAS, and UAM operations
 - 2. A "target" channel addition to the TDWR that would provide low altitude surveillance of possibly hostile low altitude targets (e.g., UAS)

Distribution Statement: Approved for public release; distribution is unlimited.

This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

©2021 Massachusetts Institute of Technology.

Delivered to the US Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.