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1 Introduction
How this presentation came about.

Steve Isenberg sent me a link (https://youtu.be/tRaq4aYPzCc?si=VNaZfuxx
LVpo-DVh )to the YouTube clip of Derek Muller’s talk on p-adic numbers. He
asked: Should we bring this to LCTG? Perhaps a joint presentation? After I
watched it three times, I began to understand what Muller was talking about.

Then I made a list of subtopics that I thought we might need to explain before
we could explain p-adic numbers. The list included

• different kinds of numbers and how they came to be:

– natural numbers N

– integers which include negative numbers Z

– rational numbers Q

– real numbers R

– imaginary numbers

– complex numbers C

• different kinds of arithmetic

– ordinal

– algebra

– calculus

– vector algebra

– complex variables

– matrix algebra
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– tensor analysis

– modular arithmetic

• Diophantine equations

– Pythagorean triples

– Chinese remainder theorem

– modular arithmetic

We decided not do a talk on p-adics until we could figure out how to do it
without all the overhead of other mathematics. “How about never? Is never
good with you?” But maybe we should talk about some of the subtopics. And
I volunteeered to talk briefly about modular arithmetic.

2 Modular Arithmetic
Modular arithmetic works with remainders from long division. For example,
divide 2023 by 4. You get 505 and a remainder of 3. (Mathematicians call long
division with a remainder Euclidean division.) After a while I’ll show you that
such remainders can be added, subtracted, multiplied, and divided; they have
an arithmetic all their own.

I use modular arithmetic recreationally. With it I can do some difficult calcula-
tions in my head. In particular I can verify by direct calculation the validity of
a theorem by Fermat, sometimes called Fermat’s “little” theorem to distinguish
it from his “last” theorem. I also use modular arithmetic to understand some
interesting features of the base-10 number system.

Because this is a pot pourri, I am only going to give you a taste of modular
arithmetic, a couple of hors d’ouevres, and leave the main meal for another time.

2.1 First Hors d’Oeuvre: Nines in Base Ten
A long time ago your teacher may have taught you to check your arithmetic by
casting out nines. Accountants used to do this. If you did it, you were using
modular arithmetic without knowing it.

Nines have interesting features. Let’s look at some of them. Take a number,
say the one from your license plate or your birth year. My license number (with
the letters removed) is 9616. Divide your number by 9. What’s the remainder?
For my example, the remainder is 4. I did not actually do the division. I used a
trick. In base-10 the remainder of any number divided by 9 is equal to the sum
of the digits in the number, where you keep summing until you have only one
digit left.
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So what I did was sum

9 + 6 + 1 + 6 = 15 + 7 = 22 => 2 + 2 = 4

This 4 is the remainder if you divide 9616 by 9. You can do the long division

9
1068)
9616
9

061
54

76
72

4

but if all you want to know is the remainder, summing the digits is much easier.
And notice. As you sum the digits you can ignore the 9s or any combinations
of digits that add to 9.

9 + 6 + 1 + 6 => 6 + 1 + 6 => 7 + 6 => 1 + 3 => 4

Instead of add 7 + 6, you can mentally take 2 from 6 and add it to 7 to make
a 9 that you ignore, leaving 4.

Notice that this calculation does not depend on the order of the digits in the
number. In other words, each of 9616, 9166, 9661, 6691, 6619, 6169, 6196,
6961,6916, 1669, 1696, 1966, when divided by 9 will have a remainder of 4.

This works for all integer numbers of any number of digits.

If the sum of the digits comes out equal to 9, that means the remainder is
0. When you’re dividing by 9, a remainder of 9 means there is no remainder,
and your number is exactly divisible by 9. Is your birth year divisible by 9? I
discovered that mine is by adding its digits.

Here’s another nice feature . If the remainder is 6 or 3, you know immediately
that the original number is divisible by 3. Thus you can see at once that 201 is
not a prime number; neither is 501.

2.2 Second Hors d’Oeuvre: Fermat and Primes
Around 1640 Pierre de Fermat showed that a prime number, e.g. 7, divided
into any other number taken to a power equal to the prime less 1, in this case
6, will always have a remainder of 1. Put slightly differently, if you subtract 1
from the number to the power, the result will be exactly divisible by the prime.

36 − 1

7
=

729− 1

7
= 104 with remainder 0.
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Here’s a general statement of Fermat’s theorem:
Given a prime p and any number n coprime to p then the remainder of

np−1 − 1

p
is 0

Try this for n = 2; and for n = 5.

Coprime means that n must not have p as a factor. The modulus 7 and the
number 10 are coprime, so 106 − 1 is exactly divisible by 7. The numbers 5 and
10 have a factor 5 in common; they are not coprime, and (104−1) is not exactly
divisible by 5. The numbers 9 and 11 are coprime to 5. Show that (94 − 1) and
(114 − 1) are each divisible by 5. 1

Most alculations that confirm Fermat’s theorem will require large numbers.
56 − 1 = 1252 − 1 = 15624 which is, indeed, divisible by 7. And you saw that
201 and 501 are not primes. What about 101? When you divide 2100 by 101, do
you get a remainder of 1? 2100 is a number about 30 digits long. I can’t handle
that on paper, but with modular arithmetic I can do it in my head.

3 Modular Arithmetic
In elementary school you learned to do arithmetic first with integers, then with
rational numbers, then with real numbers. You learned to add them, subtract
them, multiply them, and divide them. The operations of addition, subtraction,
multiplication, and division constitute an arithmetic. There are arithmetics for
other objects such as vectors or matrices or complex numbers. There is also an
arithmetic of the remainders generated by the familiar long division. This is
modular arithmetic.

Some of the properties and ideas of modular arithmetic were known in classical
antiquity, the middle ages, and later. In the early nineteenth century Carl
Friedrich Gauss drew on these ideas and properties to create modular arithmetic.
He made it into a powerful tool for solving certain kinds of problems. A key
part of his work is his idea of modulus — a number that generates remainders.
For a given modulus the remainders obey the rules of arithmetic.

As a concrete example take 7 as the modulus. Then every number is an integer
multiple of 7 plus a remainder. For example, 437 = 62 *7 +3. The remainder
is 3. Gauss introduced a notation:

437 = 3 mod 7

Any number divided by 7 will yield a remainder of 0 to 6. You may have seen
this behavior represented as “clock” numbers. As you move along the number

1Fermat’s theorem means that the 4th power of any number coprime to 5 must end in
either a 1 or a 6. Obvious yet surprising.
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line from 0 to 437, the sweep hand of the clock starts at 0 and advances to 1, to
2, . . . , to 6 and back to 0; it goes around 62 times and then advances to 3. You
can have negative remainders. For these you read the clock counter clockwise.
Thus for the example here, -1 would be the same as 6; -2 is the same as 5.

What is 156 mod 7?
156 = 2 mod 7

Here comes the arithmetic. What is the remainder you get when you add 156
and 437?

437 + 156 = 593 = (3 + 2) mod 7 = 5 mod 7

The remainders add.

What is the remainder when you subtract 156 from 437?

437− 156 = 281 = (3− 2) mod 7 = 1 mod 7

The remainders subtract.

What if you multiply the two numbers? You get 68172 which has a remainder
of 2× 3 = 6. The remainders multiply.

Division is tricky. Instead of dividing as you would with integers, you find
the inverse of 156 = 2 mod 7 and multiply 437 by that. The inverse is the
number that when multiplied times the divisor (here 156) gives 1 mod 7. It
may not exist. For 156 the inverse is 4 because 4 × 156 = 1 mod 7. Then
4 × 437 = 5 mod 7. To compare this 5 to 3/2 convert the 3/2 to an integer by
noting that 3 mod 7 is equivalent to 10 mod 7.. Then 10/2 = 5 and in this sense
the remainder of the quotient is the ratio of the remainders of the dividend and
divisor. Alternatively, find the inverse of 2 and multiply that times 3.

In general given a modulus m and numbers ai = ni × m + bi where ni is an
integer such that bi < m.

ai = bi mod m

ai + aj = (bi + bj) mod m remainders add
ai − aj = (bi − bj) mod m remainders subtract
ai × aj = (bi × bj) mod m remainders multiply

ai × a−1j = (bi × b−1j ) mod m remainders divide but not like you expect

These relationships define modular arithmetic. To see why they hold consider
the algebraic product of two numbers

(a1m+ b1)(a2m+ b2) = a1a2m
2 + a1mb2 + a2mb1 + b1b2

Only the term b1b2 is not exactly divisible by m. The remainder of the product
is the product of the remainders of the two numbers. If it is greater than m,
you divide by m and use that remainder. That is, you find b1b2 = b′ mod m.
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4 Why 9s Are Special in Base 10
What about the 9s? A base ten number, for example 1776, uses place to desig-
nate powers of ten. That is,

1776 = 1× 103 + 7× 102 + 7× 101 + 6× 100

Because the remainder of a sum of numbers equals the sum of the individual
numbers’ remainders, you can find the remainder of 1776 mod 9 by performing
the modulus operation on each term and adding the resulting set of remainders.
But see what happens when the modulus is 9. Look at the first term, 1× 103.
This is 1 × 1000. Any power of 10 is 1 mod 9. This is so because any power of
10 less 1 is a string of 9s and therefore exactly divisible by 9;

10n = 1 mod 9 for any value of n

You can see that the modular value of each term in the representation of 1776
is the product of the modular value of the digit times the modular value of the
multiplying power of 10 which is always 1. Then because remainders add, the
sum of the digits is the remainder mod 9 for the entire number.

The value of 1776 mod 9 is the sum of its digits:

(1 + 7 + 7 + 6) mod 9 = (2× 101 + 1× 100) mod 9 = 3 mod 9.

The number 3 is the remainder you get when dividing 1776 by 9, and as was
proved, it is the repeated sum of its digits.

Notice also that if the remainder is 3, then if instead of dividing by 9 you had
divided by 3, there would have been no remainder. The remainder of 3 means
1776 is divisible by 3, and because 1776 is an even number, it is divisible by 2,
so it is divisible by both 2 and 3, i.e., it is divisible by 6.

These properties exist because any power of 10 = 1 mod 9.

Suppose you were using a base six number system: 0, 1, 2, 3, 4, 5, 10, 11, 12,13,
14, 15, 20, 21, . . . . In this system the 5 would play the same role similar as
9 plays in the base 10 system. The base-6 sum of the digits would equal the
remainder from division by 56.

5 Checking Fermat
Fermat showed that for any prime p and any number n that does not contain p
as a factor, n taken to the power (p− 1) will equal 1 mod p

np−1 = 1 mod p

This is the same as saying that (np−1 − 1) is exactly divisible by p. For small
values of p, say 2, 3, 5, or 7, it is easy to confirm the theorem by direct calcu-
lation.

For n = 2 and p = 5; then (24 − 1) = 15
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which is divisible by 5. What if n = 3? Or n = 7? Try them and see.

But what if p = 101? Taking n = 2 you could calculate 2100, subtract 1 and
see if the answer is divisible by 101. The number 2100 has 30 digits. It is much
easier to use modular arithmetic. Start by finding the modular value, i.e., the
remainder, of 210 = 1024 divided by 101. It’s 14. Because the remainder of a
product is the product of the remainders, the remainder of 210 × 210 = 220 is
14 × 14 = 196 = −6 mod 101. So 240 mod 101 will be −6 × −6 = 36 which is
36 mod 101. Do this again to find 280 mod 101 is 1296 = −17 mod 101. Now
take the remainder of 220 times the remainder of 280 to get the remainder of
2100 = 102 mod 101 which is 2100 = 1 mod 101.

This result shows that 101 could be a prime number; it does not prove that
it is prime. Fermat’s theorem does not say that only prime numbers obey his
theorem. There are non-primes that satisfy the relationship. A prime number
must obey the relation, so if 2100 had not been 1 mod 101 we would have known
it was not prime.
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