

How Speech Recognition Works

Francis Ganong
Senior Technical Advisor

Nuance

Setting

- Goal: Describe how speech recognition works, and what it's good for
- Speech Recognition
 - Fundamental equation of speech recognition
 - Modeling
 - Search
 - Are we there yet?
 - Beyond speech recognition: recognizing intent
- Industry
 - Nuance's products
- Summary, Conclusions, Questions
- Caveats:
 - Review of state of the art--Nothing said here about underlying technology necessarily applies to products of Nuance Communications, Inc.
 - This is my personal opinion and my not reflect the views of Nuance Communications, Inc.

Psycholinguistic Reality: Multi-Tiered Structure and Segments

Speech Recognition

- The problem in speech recognition:
 - Given an acoustic observation¹:
 - What is the most likely sequence of words^{2,3} to explain this input
 - Using
 - » Acoustic Model
 - » Language Model
 - Two problems:
 - How to score hypotheses (Modeling)
 - How to pick hypotheses to score (Search)

Fundamental Equations of Speech Recognition

$$\tilde{W} = \underset{W}{\operatorname{arg\,max}} (P(W \mid \bar{A}, LM))$$

$$P(W \mid \bar{A}, LM) = \frac{P(A, \mid W)P_{LM}(W)}{P(\bar{A})}$$

$$P(W) = \prod_{i} P(w_i \mid w_{i-1}, w_{i-2}, w_{i-3}, ..., w_2, w_1)$$

Basic Continuous Speech Recognition

Psychologically inspired

Front End MFCC

frequency (Hz)

Input Wave

Sampling, Windowing

FastFourierTransform

Mel Filter Bank:

cosine transform first 8-12 coefficients

Stacking, computation of deltas:Normalizations: filtering, etc

Linear Transformations:dimensionality reduction

Acoustic Features

Basic Acoustic Modeling

Basic Acoustic Modeling: Hidden Markov Models

- Hidden Markov Models: FiniteStateMachine = : states, transitions, probabilities, and output symbols
- Hidden Markov Models: probabilities learned from data
- Continuous Density HMM: output symbols -> output vectors, (with probability densities)

Continuous Density Hidden Markov Models

Finite State Machines, with "hidden" probabilities

- Probabilities determined from training data
- Output: vectors, not symbols, with Probability Density Function

Acoustic

Features

Search

Lexicon

Acoustic

Models

Language

Models

PDFs in HMMs: Gaussian Mixture Models, with variants

- N dimensional
- Gaussian Mixture Models—sum of N dimensional hills
- "genones": pool of Gaussians, different weights.
- Variance structure
 - diagonal covariance (ellipsoids)
 - Full covariance (take into account correlations among variables)

Basic Acoustic Modeling

Standard Acoustic Modeling

- Words are sequences of (context dependent) phonemes
 - Phonetic context decision trees
 - Triphones: phonemes with left and right context
 - Clustered
 - "Simple" 3 state HMMs: statistical Gaussian mixture models
 - Hundreds of thousands of parameters

Training Acoustic Models

Input: lots of labeled data

Hundreds of hours of speech, with word sequences

Output:

LDA

Phonetic context tree

Gaussian Mixtures

Main step: segment data (into phones, or context dependent phones, then train Gaussian mixture models for each phone.

Bootstrap Recipe:

Flat start for phonemes

Cluster to make phonetic tree

Segment

Train models

Redo

Recent extension: "lightly supervised" training

Lexicon

Psychologically inspired

Basic Lexicon

- A list of spellings and pronunciations
 - Canonical pronunciations
 - And a few others
 - Limited to 64k entries
 - Support simple stems and suffixes
- Linguistically extremely naïve
 - No phonological rewrites
 - Doesn't support all languages
- Large injection of linguistic information into the system.

Basic speech recognizer—Language Model

€

Grammars

Input Front End Acoustic Models

Search

Lexicon Language Models

Constrains what the user can say
Reduces search space substantially
Related to interpretation problem
Usually expressed as CFG or FSM

One version: FSM

Language Modeling

Application Grammars

- A grammar is a set of words together with constraints specifying how words are combined to form valid sentences.
- Some word sequences are in a grammar:
 - "I'd like to order a pepperoni pizza please"
- Some are not
 - "please pizza pepperoni a order to like l'd"
 - "Do you fly to Jacksonville?"

SLMs: Stochastic LMs

- Rather than enumerating legal sequences, any sequence is legal, but some more likely than others.
- Ngrams
 - Word NGrams
 - POS Ngrams
 - really big LMs, including the web

Ngram sLMs

Trigrams: p(W3 | W1 W2)

```
e.g. p("rose" | "stock prices") vs. p("prose" | "stock prices")
```

- Very simple model for language, which we know is "wrong" (because it ignores all previous words, except the last two)
- As an engineering approximation for speech recognition, has been very hard to beat.
- sparse data problem requires back-off strategy:

many trigrams in testing data are new

Language Learning: About Data

"There is no data like more data" (Mercer at Arden House, 1985) "More data is more important than better algorithms" (Brill's opinion)

from: Some of my Best Friends are Linguists (LREC 2004) Frederick Jelinek, Johns Hopkins University http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf

Solving crosswords at 10,000 Words Per Second

Speech Recognition: Basic -> 2010

$$\Delta \rightarrow \Delta\Delta \rightarrow StackedFrames$$

- 3->5:
 - Triphones -> Quinphones
 - Trigrams -> Pentagrams
- Bigger acoustic models:
 - More parameters
 - More mixtures
- Bigger lexicons
 - 65k -> 256k
- Bigger language models
 - More data
 - More parameters

Speech Recognition: Recent improvements

- Deep belief nets
 - Largest improvement in several years
 - Augments (or replaces) acoustic model
 - Breakthrough realization:
 - Geoff Hinton, U. Toronto
 - "loading" with unsupervised data
 - Evaluates large, deep neural nets
 - Efficient computation with GPUs
- Training from lots and lots of lightly labeled data

Speech recognition observations

- Total victory of data-based, statistical approaches
- Standard statistical problems
 - Curse of dimensionality, Long tails
 - Desirability of Priors
- Quite sophisticated statistical models
 - Advances due increased size and sophistication of models
- Similar to Moore's law: no breakthroughs, dozens of small incremental advances
 - Substantial continuous improvement in recognition technology
- Tiny impact of linguistic theories
 - except naïve theory: speech is an unconstrained sequence of words, words are sequences of phonemes

Are we there yet?

- Whatever Happened to Voice Recognition?
- June 21, 2010 (Jeff Atwood)
- Remember that Scene in <u>Star Trek IV</u> where Scotty tried to use a Mac Plus?

Are we there yet?

Can speech recognition match human performance?

Dictation performance

Some speakers (David Pogue) < 1%

Many radiologists, <2%

Most people aren't David Pogue or Radiologists!

Performance for 2 speakers, single channel, simple grammar Human: 22.3% Error rate; IBM: 21.6

People still better than machines in noise:

audio CAPTCHAs

NUANCE

present a digit sequence in noise

Multi microphones will allow speech recognition to exceed

Beyond speech recognition: intents

- When you use a computer, how often is it write a text?
- (v.s. how often do you want to do something?
 - Listen to some music
 - Check a fact (is my flight on time?)
 - Fill out a form
- Call centers, IVR
 - Can we recognize what the user wants:
 - "What can I do for you"? speak freely for call routing
- SIRI:
 - Carrying out actions

How to map sentences to intents?

- Use similar techniques as speech recognition:
 - Labeled data
 - Learn associations between words and intents
- Similar problems:
 - Expensive to get labeled data
- Want more than just "what is this about", but "exactly what do you want?

Work very much in progress.

Speech Recognition in use

We're a company most people don't realize they already have a relationship with

Nuance Products

- Dragon
 - Dragon Naturally Speaking
 - Dictate (Mac)
- Healthcare
 - eScription: machine assisted medical transcription
 - PowerScribe: "Front end" dictation by radiologists. Instant reports!
- Mobile:
 - Handsets: recognition on the phone
 - Handsets: key pad software: T9, Swype
 - Automotive
- Enterprise:
 - Call Centers

5 billion

mobile cloud transactions daily

3,900

patents & applications

65+

countries

12 billion

Canon

customer calls served annually

12,000

employees

70+

languages

800 million

mobile keyboards shipped annually

13,000

mobile app developers

1,200

voice and language scientists and engineers

5 billion

lines of medical data transcribed annually

25 million

voice-enabled cars sold annually

Nuance Products

- Dragon
 - Dragon Naturally Speaking 21 million customers
 - Dictate (Mac)
- Healthcare 450,000 physicians, 10,000 organizations
 - eScription: machine assisted medical transcription
 - PowerScribe: "Front end" dictation by radiologists. Instant reports!
- Mobile:
 - Handsets: recognition on the phone 500 million devices
 - Handsets: key pad software: T9, Swype 7 billion devices
 - Automotive 70 million cars
- Enterprise:
 - Call Centers 8,000 systems, 10 billion caller interactions per year

And you can try it: (if you have a smart phone)

- iPhone: app Store
 - Dragon Dictation
 - Dragon Go
- Android app Store
 - Dragon Hands Free Assistant
 - Dragon Go!
- 1 billion words recognized

Summary, Conclusions

- Speech recognition is very hard
 - Engineering a very human capability
 - Substantial progress
 - Not as good as people. Yet.
 - Ongoing progress
 - No fundamental limits seen
- Intent recognition is harder
 - Unknown how far we can go

Questions?

(discrete density) Hidden Markov Models

Finite State Machines, with "hidden" probabilities

Probabilities determined from training data

Input: symbols, 100 symbols second: F1, F2,...

Acoustic

Features

Search

Lexicon

Acoustic

Models

Language

Models

Hidden Markov Models

- Finite State Machine
- = : states, transitions, probabilities, output symbols

