PIXELS, PIXELS AND MORE PIXELS.

Presentation to the Lexington Computer Club May 19, 2010 By Gerry Sauermann

OVERVIEW

- What is a Pixel?
- What is a Pixel Count?
- Is more better than less. When?
- Relationship between Mega Pixels and Megabytes
- When does your Camera cheat a bit, or quite a bit?
- What does Suppression really mean?
- What are the Requirements for a matched Display?
- Digital Projector Issues
- Digital Printer Issues
- Limitations for Displays Selection of Size
- Illumination / Sharpness Issues for Zoom and normal Operation

WHAT IS A PIXEL?

- The Word Pixel was coined in the Sixties as a Combination of PICTURE and ELIMENT somehow the "C" became an "X".
- In the Forties very detailed studies of the relation between image content and resolution (Pixel size).
 And the Answer is: It Depends
- Different concepts for Cameras, Projectors, TV Displays and Printers

In digital imaging, a pixel is a single point in a raster image. The pixel is the smallest addressable screen element, it is the smallest unit of a picture which can be controlled.

Let's Start With A Quick Detour

Much of our communications in our daily life are based on visual clues. Pictures, Print, Drawings, Letters, Photographs, TV Displays, Books were designed to be "Looked at".

The Vision Process

- it stands to reason to explore the Vision Process and the Eye's Signal Processing capabilities.
- The understanding of these Processes allows for maximizing vision devices
- Such as Cameras, Projectors, Printers, TVs and Monitors.

The Most Sophisticated DigitalCamera The big surprise: The human eye works exactly like a modern Digital camera, Or A modern Digital Camera works exactly like the human eye ! The digital camera was invented in the sixties, but Mother Nature beat us engineers by Several 100 million Years!

Components of The Human Eye

Three major components of the eye

- The lens
- The Retina
- The Nerve Center behind the eye, connecting to the brain.

How does the Human Eye Digitize

Close look at the Retina:

- Two types of special nerve endings: About 75 t0 100 Million Rods
 About 150 Million Cones.
- Rods are not color sensitive. but detect shape and outlines.
- Cones are detecting colors

The Retina as a Detector array

- One Rod and Three Cones are grouped together.
- One of the cones records BLUE
- One of the cones records Green
- One of the cones records RED
- Combinations of one, two or all three create all visible colors
- Together they form the smallest Detection unit
- The human Eye is equivalent to about a 200 -400 Megapixel Camera

Digital Camera Sensor

The BAYER Configuration

Camera's Color Vision

- 50% of Sensors detect Green
- 25% detect Red
- 25% detect Blue
- To increase Resolution: Calculation of "Missing Colors" on Sensor Chip

What is a Pixel Count

- Usually Count of all individual Sensors
- But Pixel Count does not clearly define Resolution
- Interpolation of Signals can blur small Details
- Modern Standard is the MEGAPIXEL
- Latest up to14 Megapixel Cameras
- Effect of Camera Lens

Effects of the Lens Quality

- Even the best camera lenses can image small details only to a limit.
- Every object will be imaged with a small, but important blur
- Blur size depends on lens quality
- Importance of match between size of lens blur and sensor pixel size
- Reflected in cost of camera

Need new Units for Measurements

- Dimensions of pixels are very small (in the vicinity of 1/10,000 inch)
- For comparism: Human Hair app. 4/1,000 inch
- Convenient Metric: Use of the "Micron" (mu)
 25 Microns (mu) = 1/1,000 inch
- Modern pixel sizes: 2 to 7 mu
- Blur size of best lenses: 2.5 to 5 mu
- Substantial larger for Zoom Lenses

Revised Pixel Count

- Blurred images obtained by inexpensive lenses cover several pixels – bad match!
- Can cause substantial reduction in real pixel count!
- Usually only 95% of all pixels are "Active", remaining pixels used for controls
- Manufacturers use different methods for counting pixels – reason to "Watch Out"

Is more better than less?

Important Parameters:

What will the camera being used for?

- Taking casual, personal pictures
- Taking close-up pictures with great detail
- Taking architectural pictures
- Taking landscape scenes
- Pictures to be blown-up to large formats
- Photographing printed documents

Pixel Count Considerations

- Most modern cameras offer selection of different pixel count settings.
- Read-out time: generally fixed time to read one pixel
- Picture storage; how much memory is required
- How many pictures total can be stored

Pixel Count Summary

- Again, it depends on what you want to pay and
- How you want to present your pictures.
 Print, project or never look at them again
- Most cameras have different pixel count settings

Megapixels and Megabytes

- A few numbers:
- Example: 14 Megapixel camera
 14 million pixel addresses 3 bytes each
 3 colors, 256 intensities each color,

3 bytes each

- Additional picture notes 4 bytes each
- Total bytes count 10 x 14 = 140 Megabytes or about 7 pictures/Gigabyte in memory

Does your Camera cheat a bit?

- The answer is yes!
- The number of 140 Megabytes/picture applies only to a very special setting, a so called "Bitmap".
- For normal use the bitmap is much to cumbersome, it is only needed for professional editing – changing faces, inserting people etc.
- With normal settings the camera COMPRESSES the information automatically!

What is Image Compression?

- The camera does exactly what the human eye does – it only records the important information!
- In principle the computer in the camera considers the green information the most important one (outlines/shapes) and uses red and blue to color-in with less resolution
- Some very small details may be lost, but are usually not noticeable.

The JPEG Standard

- This is the most used compression standard; in expensive cameras others may be selected
- It uses very complex algorithms
- It comes in several modes expressed in % (from 90% down to 30%) which in some cameras can be selected

Matched Displays

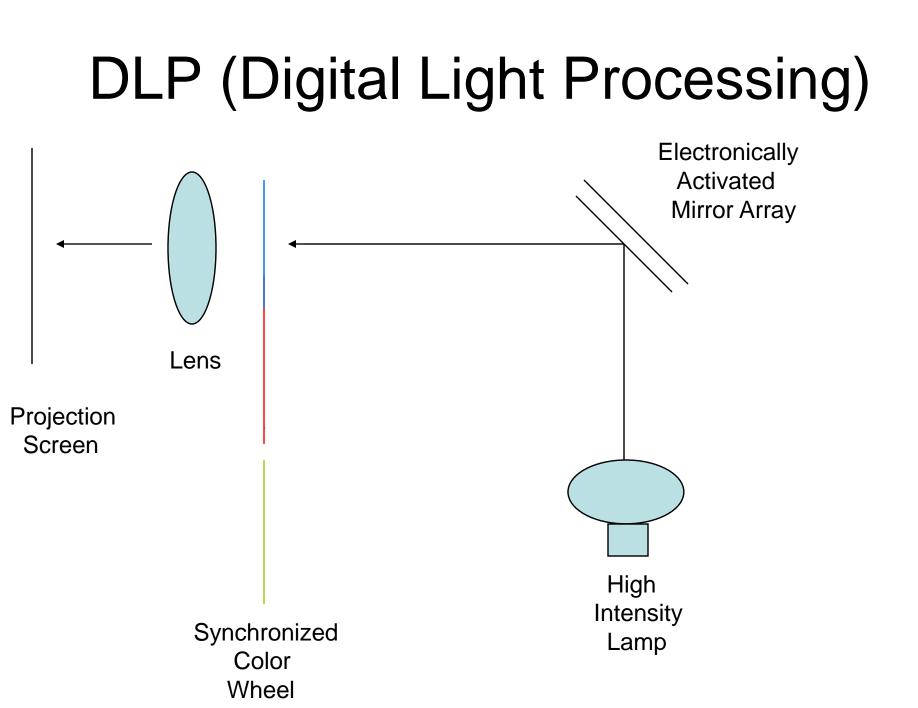
- For optimum results the screen resolution of a display should be the same as that of the recorded picture
- Example: Pictures taken with high resolution and displayed on regular TV usually look disappointing blurry
- This is very important when text is projected (Choice of fond size)

Resolution of projected Fonds

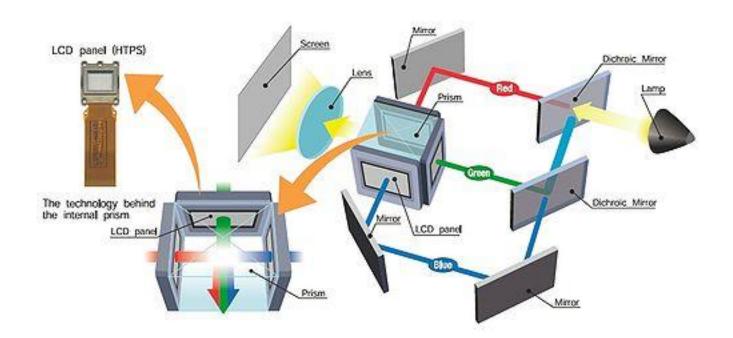
- Number54
- Number 48
- Number 40
- Number 36
- Number 28
- Number 24
- Number 20
- Number 18

Results of unmatched Displays

- The display processor has to find a compromise.
- on a pixel to pixel basis If the pixel counts are multiples of each other, 600 vers 1200 or 600 vers 2400,

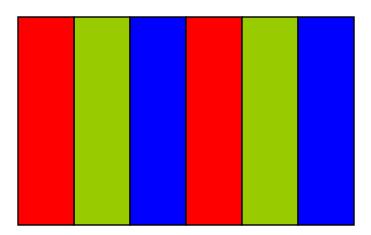

the processor just ties several pixels together.

- If there are no multiples, interpolations have to take place, creating two new pixels out of three etc.
- This leads to blurring and loss of resolution


How does a Digital Projector work?

 There are basically two types devices sold by various vendors

- Digital Light Processing (DLP) units
- 3 LCD devices (based on Liquid Crystal Technology



3LCD Principle

(Copy from Wikipedia)

LCD Cell for TV Displays

The liquid Crystal Display Cell

- Uses complex Polarization Effects
- Several liquid crystals change polarization when voltage is applied
- Very short response times
- Usually referred to as "Controllable Light Valves"
- These cells can withstand very high light intensties

Summary

- This presentation contained a lot of technical information.
- If you forgot all the stuff presented today, you still can enjoy your camera, your pictures and your computer as always

by the time you get home!

Thank you!